INVESTIGATING HOMICIDE:
NEW RESPONSES FOR AN OLD CRIME

Jenny Mouzos
Australian Institute of Criminology

Paper presented at the
4th National Outlook Symposium on Crime in Australia,
New Crimes or New Responses
convened by the Australian Institute of Criminology
and held in Canberra 21-22 June 2001
Abstract

Homicide is a traditional offence that has been deemed punishable conduct since at least the 13th century. However, it is sufficient to say that long before the act of taking one’s life became enshrined in law, people were engaging in such behaviour.

Recent research indicates that the modus operandi of homicide has remained relatively consistent over the years, however with increased technological capabilities the investigation of this traditional offence may have changed. This paper aims to examine how the investigation of homicide has been facilitated by new technologies and whether “new responses” to this traditional crime have emerged. How has the advance of technology triggered new responses in the investigation of this traditional crime?
Introduction

Homicide is a traditional offence that has been deemed punishable conduct since at least the 13th century. However, it is sufficient to say that long before the act of taking one’s life became enshrined in law, such behaviour was considered as offence against morality, and thus prohibited. Whether the act of homicide is prohibited on moral or legal grounds, needless to say this does not prevent people across the World from engaging in such behaviour. In Australia, according to the latest figures derived from the National Homicide Monitoring Program, there were 337 victims of homicide in 1999/2000. In other words, about two people for every 100,000 Australian residents in 1999/2000 were killed (Mouzos 2001). Comparatively, Australia’s homicide rate is low when compared to countries like the United States where about 6 for every 100,000 Americans are killed (US Department of Justice 2000) (Figure 1).

Figure 1: International Comparison of Homicide*, 1972 - 1999

Regardless of its prohibitive nature it is almost certain that people will continue to commit murder in Australia and overseas, and that lethal violence is not likely to abate in the near future. It is also certain that every violation of the law of homicide becoming known to authorities will be investigated in order to bring the perpetrators to justice. Whether it is before a King, as was the case in England during the 1200s, or nowadays before a Supreme Court judge, the matter has to be investigated with a view to gathering sufficient evidence support a violation of the law of homicide.

Legal texts indicate that the law of criminal homicide has changed fundamentally over time, although legal definitions are historically relative (Brown et al. 1996, p.474). Whilst the law of homicide has evolved over time the incidence of homicide has remained relatively stable, despite yearly troughs and boroughs. The rate of homicide in Australia has fluctuated from as low as 0.84 in 1941 to as high as 2.39 in 1988 (Figure 2). Similarly, a recent compendium on homicide in Australia between 1989/90 and 1998/99 has revealed that over the last ten years the circumstances and characteristics of homicide in Australia have remained relatively unchanged.
Whilst the circumstances and characteristics surrounding the act of homicide itself remain relatively unchanged, this cannot also be said of the criminal environment generally, and the society at large. At an address to the National Press Club in Canberra in 1999 Mr M J Palmer, then Commissioner of the Australian Federal Police indicated in his speech that law enforcement would face enormous challenges in the new millennium:

*The world had moved on at a rate and complexity not anticipated in the 1970’s. The rapidly changing international environment and exponential growth in technology made radical change a non negotiable imperative (p. 4) ... The criminal environment in the 21st century will, and is already in many instances, very different to what it was like 10 years ago (p. 6).*

These increasing changes and advancements made in technology will impinge on all facets of law enforcement, including the investigation of homicide. Hence, while the modus operandi of homicide has remained relatively consistent over the years, the onset of increased technological capabilities has effected the investigation of this traditional offence in a number of significant ways. The purpose of this paper is to examine the technological advances in the investigation of homicide and outline what “new responses” to this traditional offence have emerged over time.

**Changes in Investigating Homicide**

Common in many of the offices of those detectives entrusted to investigate homicide is what can be referred to as a sort of mission statement. It reads:

---

**The Homicide Investigator**

*No greater honor will ever be bestowed on an officer or a more profound duty imposed on him/her than when he is entrusted with the investigation of the death of a human being. It is his duty to find the facts, regardless of color or creed, without prejudice, and to let no power on earth deter him from presenting the facts to the court without regard to personality.*

---

Whilst the “fact finding” purpose of any homicide investigation may not have changed over the years, what appears to have changed is the methods for such “fact finding”. The following discussion will describe a number of “new responses” in the investigation of homicide, beginning with the management of information crucial to deciphering between “fact and fiction”.
**Information Management:**

Like all investigations, homicide investigations require the gathering and analysing of large amounts of information, intelligence, leads, tips, witness statements, etc. However, the analysis of such large amounts of information using traditional research methods can take quite a long time, and using antiquated analysis methods has been said to impair or slow down an investigation. Information overload for investigators, lack of accessible information for uniformed police officers, and the exchange of helpful and timely information for law enforcement are issues that can impact dramatically on an investigation, leading sometimes to the delayed arrest of the perpetrator (Travis 1996), or in extreme cases, the arrest of an innocent person. An example of the latter is the Mannix Murder investigation.

*Case Study One: The Mannix Murder Investigation*

In the early hours of 22 June 1984, Kevin Mannix met a brutal death in Gold Coast, Queensland. Soon after his death, Queensland Detectives began investigating his death, with their main focus directed at the victim’s son, Barry Mannix. Detectives interviewed Barry over a twelve-hour period, during which he signed two written confessions to having murdered his father. At 1.48am he was charged with his father’s murder. Prior to proceeding to trial, the case took a strange turn. Another person who was being questioned about a stolen vehicle, burdened with guilt, confessed to the murder of Kevin Mannix, implicating three other accomplices – none of whom was Barry Mannix. Subsequently, the Attorney-General of Queensland filed a ‘No True Bill’ in the Mannix case, and Barry was exonerated.

There were a number of ‘information management’ factors that led to the detectives charging the wrong person. Firstly, the investigation was criticised as having lacked guidance and supervision in the early stages. In fact, one of the actual perpetrators of the murder did come to the attention of the detectives early on, but through a shortcoming of the investigation, a file was not prepared in his name, and he was not interviewed. Similarly, many of the detectives involved in the case had little knowledge of the information management system, termed ‘The Major Incident Room Recording Structure’. “... some detectives interviewed actually expressed a preference for making inquiries rather than preparing or filling out Job Logs”. According to the Qld Police Tribunal “this attitude demonstrates the general lack of appreciation of the system and perhaps highlights the need for more support staff” (Queensland 1986, cited in Grabosky 1989, p. 72).

In recent years, homicide investigations such as Ivan Milat “Backpacker Murders” and the “Snowtown or Bank Vault Murders” (also referred to as “Operation Chart”) have had to organise and sift through a wealth of information. At one stage during the Backpacker Murder Investigation it was estimated that the holdings of information increased from around seven to ten thousand pieces of information to around 1.5 million in just 12 weeks.

Given the complexities associated with major homicide investigations, especially in dealing with large volumes of data, information management appears to be a major challenge. Difficulties arise in trying to draw together a variety of usually incompatible databases, at the same time as remaining abreast of new information. Information management systems are required to be sufficiently flexible to allow for adjustments in and the realignment of information groupings as circumstances change, and the ability to retrieve information in the desired form, so that important information is not overlooked. Increasingly critical to the detection and apprehension of suspects is the ‘real time’ availability of intelligence.
**Exhibit Property Management System (EPMS)**

One of the major challenges faced by detectives investigating the Snowtown Murders in South Australia, as well as those previously tasked with the investigation of the Milat Murders was how to deal effectively with the large volumes of information, as well as tracing items gathered as part of the investigation. To overcome this potential problem, the *Exhibit Property Management System* (EPMS) was developed by South Australia’s Police Service Research and Development Unit to handle the complex requirements of Operation Chart – the investigation of the Snowtown Murders.

In brief, the EPMS managed the entire collection of evidential exhibits from the moment of locating and seizing the piece of evidence through to its logging and maintenance in the system (Linnell 2000). How EPMS works is that every piece of evidential exhibit gathered during the investigation is allocated with its own bar code to allow tracking. This technological advance in the tracking of evidence has been made possible through the importation of specific software from Germany. Basically, every piece of evidence collected during Operation Chart has been bar coded, and its image, current location and related details can be searched in a computer by running the bar code in the program. “The technology promises an end to those old days when simple human error, one glitch in a long series of events, could lead to a humiliating moment in court when it was revealed that something important had been lost” (Linnell 2000, p. 46).

Regardless of the onset of new responses regarding the management of information, hard copies are still required to be kept of all information received. Computers may make the task easier, and less time consuming, but a paper copy as a “back-up” or ‘primary evidence’ is still required.

**Violent Crime Linkage Analysis System (ViCLAS)**

In any major crime such as homicide, law enforcement officers across Australia are required to complete a *Violent Crime Linkage Analysis System* (ViCLAS) “long form” that contains over 260 questions. Initially developed by the Royal Canadian Mounted Police, ViCLAS is administered nationally by the Australian Violent Crime Analysis Centre (AVCAC) located at the Australian Bureau of Criminal Intelligence (ABCI) in Canberra. ViCLAS is an automated crime linkage system designed to capture, collate and compare predatory crimes of violence (homicide, attempt murder, sexual crimes, non-parental abductions, missing persons) through analysis of victimology, suspect information, modus operandi, forensic and behavioural data (Ontario Provincial Police 2000; Barron 1996). In addition, the ABCI has complemented its databases by developing the Australian Law Enforcement Intelligence Net (ALIEN) to provide a highly protected communications network for rapid and secure transfer of information between State police networks throughout Australia.

This “new response” can be used in the investigation of homicide, by providing investigative and analytical expertise, improving the efficiency and effectiveness of criminal investigations through its ability to identify links between crimes which may have previously gone unnoticed. The identification of potential linkages to similar crimes is no longer restricted within jurisdictional boundaries, but can now extend to cover the whole of Australia, which enables the tracking of an offender that moves from state to state, and to link seemingly unconnected crimes in different states.

In the December (1997) edition of *The Queensland Police Union Journal* an article appeared entitled “Innovation in Homicide Investigations”. This article outlined an innovation in the area of information management in the Homicide Investigation Squad (HIS) in Queensland. This innovation or “new response” was the assignment of a full-time Intelligence Officer from the Queensland Bureau of Criminal Intelligence (most homicide squads or major crime units in
Australia now enjoy the benefits of Intelligence Officers assisting investigations. The role of the Intelligence Officer (at the HIS) is to assist investigating detectives with the collection, collation, and analysis of information during the investigation of homicides. This includes production of charts so as to allow a graphical display of all available information, thereby making it easier to identify areas for focussed inquiries. They are also able to liaise effectively and efficiently with other law enforcement agencies, as well as with other outside agencies and numerous private sources of information. “The timely access to this information is of vital importance to a speedy resolution of the investigation” (The Queensland Police Union Journal 1997, p. 39).

**Forensic Science**

Whilst there have been a number of “new responses” in the area of information management assisting homicide investigations, emerging trends are moving forensic science to a point where it is playing a much larger role in investigations, and specifically in homicide investigations, through intelligence driven, proactive technologies (Osterburg & Ward 1992):

> Where once an investigating detective relied solely on knowledge of local offenders, modus operandi and the knowledge that offenders would not take flight, today’s investigators are faced with the barriers of an easily mobile public and a less than cooperative society in general. As such with the changes and advances made in today’s technological society, homicide investigations now rely heavily on scientific examination as well as standard investigative techniques (Williams 1997, p.16).

The crime scene often provides a wealth of information to aid law enforcement officials in solving a crime. Detecting, preserving, and recording that information is being materially assisted by developments in modern technology. Innovative technologies are enhancing capabilities of crime scene and modern crime investigation. Forensic science has the ability to contribute to investigations in four main areas:

1. It can **establish** the elements of a criminal offence i.e., the identification of suspect substance as an illicit drug or that a fire is not accidental.
2. It can **associate** or link suspects to a crime scene through physical materials and biological trace substances or through fingerprints.
3. It can **exclude** a suspect.
4. It can help in **reconstructing** a crime or crime scene (Robertson 2000).

**CrimTrac – The National Criminal Investigation DNA Database (NCIDD)**

The most significant development in forensic science since fingerprinting\(^1\) technology a century ago is DNA and the National Criminal Investigation DNA Database (NCIDD) in CrimTrac. In brief, DNA, or deoxyribonucleic acid, also known as a “genetic fingerprint” is the fundamental building block for an individual’s entire genetic make-up. With the exception of twins, every individual has differences in their DNA molecules that makes them unique (Figure 3). DNA is therefore a powerful tool in the identification of persons from their body samples, and because no two persons are the same, DNA collected from a crime scene can either link a suspect to the evidence or eliminate a suspect (Smialek et al., 2000).

---

\(^1\) There has also been a number of major advances regarding fingerprinting technology as well. The new National Automated Fingerprint Identification System (NAFIS), being currently implemented under CrimTrac will enable the taking of fingerprints by ‘live scan’ and improve matching through digitisation of existing fingerprints and improved matching algorithms (PMSEIC Working Group on Science, Crime Prevention & Law Enforcement 2000).
DNA evidence can be collected from virtually anywhere, and in theory only a few cells are sufficient to obtain useful DNA information for comparison and analysis to assist investigations. Table 1 lists some common items of evidence that may be collected during investigations, the possible location of the DNA on the evidence, and the biological source containing the cells.

The new National Criminal Investigation DNA Database established in Canberra is a world-first national DNA database, that also houses fingerprints, palmprints and convicted paedophiles. This database will allow law enforcement officers to scan using a secure browser that will interface with forensic laboratories in each State and Territory, crime samples against a matrix of DNA and print specimens from other jurisdictions. The following is an illustration of how CrimTrac can be used in investigations:

1. A man is arrested by police for an assault at a pub.
2. A DNA swab is taken and checked against CrimTrac.
3. The check indicates that there are a number of crime scene matches.
4. Police can now question the suspect about those crimes.
5. If the man’s DNA does not match anything on the database and he is not convicted of assault, his DNA is NOT stored on CrimTrac.
6. If convicted, the man’s DNA remains on CrimTrac and, if he reoffends later, can be traced (Minister for Justice and Customs Media Release 23/09/98).
Table 1: Identifying DNA Evidence: Possible Location and Source

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Possible Location of DNA on the Evidence</th>
<th>Source of DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseball bat or similar weapon</td>
<td>Handle, end</td>
<td>Sweat(^2), skin, blood, tissue</td>
</tr>
<tr>
<td>Hat, bandanna or mask</td>
<td>Inside</td>
<td>Sweat, hair, dandruff</td>
</tr>
<tr>
<td>Eyeglasses</td>
<td>Nose or ear pieces, lens</td>
<td>Sweat, skin</td>
</tr>
<tr>
<td>Facial tissue, cotton swab</td>
<td>Surface area</td>
<td>Mucus, blood, semen, sweat, ear wax</td>
</tr>
<tr>
<td>Dirty laundry</td>
<td>Surface area</td>
<td>Blood, sweat, semen</td>
</tr>
<tr>
<td>Toothpick</td>
<td>Tips</td>
<td>Saliva</td>
</tr>
<tr>
<td>Used cigarette</td>
<td>Cigarette butt</td>
<td>Saliva</td>
</tr>
<tr>
<td>Stamp or envelope</td>
<td>Licked area</td>
<td>Saliva</td>
</tr>
<tr>
<td>Tape or ligature</td>
<td>Inside/outside surface</td>
<td>Skin, sweat</td>
</tr>
<tr>
<td>Used condom</td>
<td>Inside/outside surface</td>
<td>Semen, vaginal or rectal cells</td>
</tr>
<tr>
<td>Blanket, pillow, sheet</td>
<td>Surface area</td>
<td>Sweat, hair, semen, urine, saliva</td>
</tr>
<tr>
<td>“through and through” bullet</td>
<td>Outside surface</td>
<td>Blood, tissue</td>
</tr>
<tr>
<td>Bite mark</td>
<td>Person’s skin or clothing</td>
<td>Saliva</td>
</tr>
<tr>
<td>Fingernail, partial fingernail</td>
<td>Scrapings</td>
<td>Blood, sweat, tissue</td>
</tr>
</tbody>
</table>

Source: National Institute of Justice, 1999, p. 3.

While DNA technology is no longer regarded as “new” what can be considered as a “new response” is the establishment of the database, as well as the legislation that empowers police to compel prisoners and those charged with a criminal offence to provide a sample. This sample can then be compared with those samples in perpetuity for use in any investigation. The availability of such a database has the potential to assist in solving many of the unsolved crimes, including homicides in Australia (see case studies in Appendix 1). Recent figures from the NHMP indicate that of the 300 homicide incidents recorded in Australia in 1999/2000, 41 or 13.7 per cent were not cleared or had not been solved by police at the time of data collection (Mouzos 2001).

Since legislation was passed in April 1995 in the United Kingdom empowering police to take a DNA sample, their DNA database now contains over half a million samples. Detective Superintendent Robin Napper from the UK sums up the results in one word “spectacular”. According to Napper (2000, p. 67):

*Of the 54,000 hits of crime scene DNA samples taken since April 1995, over 35,000 hits off the database have been recorded ... In addition to that 29 previously unsolved murders have been solved. These are murders that traditional crime scene investigation had failed to clear up, but the DNA evidence gave the investigators that vital clue.*

_In the United Kingdom more than 600,000 samples have been submitted for analysis. Of these, just over 500,000 have been profiled and included in the database. From April 1998 to the end of January 1999, there were 35 murder-manslaughter person to crime matches, 112 rapes, 41 sexual assaults, 40 grievous bodily harms and 88 serious robberies, 51 aggravated burglaries and 46 arson person to crime matches (CRIMES AMENDMENT (FORENSIC PROCEDURES) BILL 2001: Second Reading, 26 March 2001, House Hansard, Vale, Danna, MP)._  

This “new response” in investigations has been heralded as “the most important law enforcement initiative since Federation” (Minister for Justice and Customs Media Release 23/09/98). Similarly, the use of DNA profiling is being recognised as one of the most significant breakthroughs in forensic science and policing since the advent of fingerprinting in 1858 (Commissioner Ryan 2000).

\(^2\) There is however no DNA in sweat, it is the cells in body fluids which contains nuclear DNA.
Using DNA in Investigations: Successful Case Studies

Elimination of a Suspect

Case Study Two
On the 10th April 2001, a Queensland man was released from jail after serving 10 months of his sentence for raping a 13-year old intellectually impaired girl in 1998. He was released after the Court of Appeal accepted DNA evidence which identified that he did not commit the offence (The Age, 16/04/01, p. 6).

Case Study Three
Detectives in Victoria discovered circumstantial evidence linking Robert Arthur Selby Lowe, 64 who is currently serving a life sentence for the murder of Sheree Beasley in Victoria, with two other unsolved child murders. However, after obtaining a DNA sample from Lowe and running it through the DNA database, his sample failed to match the DNA samples in the database, hence eliminating his as a suspect in the two unsolved child murders.

Linking a Suspect to the Victim

Case Study Four
A Sydney man was convicted of an 18 year old murder earlier this year after new DNA testing matched samples, taken from him as a suspect in 1988, to semen on a towel found covering the body of the murder victim.

Case Study Five
Cigarette butts found in the house of the offender and in his car contained DNA identified with the murder victim. This DNA evidence was used to confirm the victim’s presence at the offender’s house and in his car (R v Schuurs & Anor [1999] QSC 176 (29 July 1999)).

Case Study Six
A mass voluntary screening of the entire male population in the north-western NSW town of Wee Waa was conducted last year to identify the rapist of a 91-year old woman. This led to the arrest and conviction of Stephen James Boney, who is now incarcerated for the offence.

Case Study Seven
Ivan Robert Milat was convicted of the murders of seven backpackers in NSW. DNA profiling matched blood on a piece of cord found in the garage of the premises occupied by Milat at the time he was arrested with the blood of one of the murder victims (R v Ivan Robert Marko Milat [1996] NSWSC No. 70114 of 1994 (30 May and 5 June 1996)).

Case Study Eight
An examination of the pistols used in a November 1997 triple murder in a Chippendale cafe revealed that the suspect’s DNA matched that found on a .25 calibre pellet that was in the basement of the cafe where the victim was located. Also, the DNA taken from the boots of another suspect was matched to the DNA of one of the victims. The DNA evidence assisted in establishing that the suspect was near the victims at the time of their death (R v Georgiou & Harrison [2000] NSWSC 287 (10 March 2000)).
Case Study Nine
On the night of 9 May 1999, the victim, 55 was walking through a park in Liverpool, Sydney. He was attacked from behind by the offender, and struck violently about the head and face numerous times. The victim suffered a fractured nose, facial lacerations and bruising. The laceration to the victim’s right eye caused heavy bleeding, and as a result of the alleged actions of the accused, bled onto the accused’s thigh area. A pair of blue demin jeans were later seized from the accused’s property, where blood was found to be present in the thigh area. This matched the victim’s DNA. According to statements tendered in the trial, the victim’s “DNA found on the jeans is expected to be found in fewer than one in ten thousand million individuals (10,000,000,000) in the general population (R v Sotheren [2001] NSWSC 182 (20 March 2001)).
Integrated Ballistics Identification System (IBIS)

In June last year the New South Wales Police Service purchased new forensic ballistics technology – the Integrated Ballistics Identification System or IBIS – that has been described as “collecting the DNA of weapons” (Daily Telegraph 15/03/01, p. 10). This “new response” IBIS is a computerised image-analysis system that acquires, stores, and analyses images of a large number of fired bullets, bullet fragments and spent cartridges. However, what is deemed impressive about this computer system is its efficiency. An examiner can easily enter and correlate eight or more projectiles and casings per day. In contrast, the same task could take up to a week to do utilising the comparison microscope. IBIS allows examiners to link crimes that were previously unlinked, and furthers investigations by altering examiners that the same firearm was used in two (or more) crimes (Bureau of Alcohol, Tobacco and Firearms 1999).

IBIS has produced numerous positive outcomes in the US demonstrating its merits, and recent reports seem to suggest that it will benefit the investigations here in Australia. For instance, an article that appeared in the Daily Telegraph in March this year indicates that “forensic ballistics unit experts yesterday [14/03/01] successfully matched cartridges from two drive-by shootings in Sydney’s west last year”. The article also stated that “using the IBIS system, police had established that the same handgun was used in both incidents” thus providing evidence to link the incidents.

In Australia, around 19 per cent of homicides are committed with a firearm each year. However, NHMP data indicate that handguns as a proportion of all firearms used in homicide has increased. In 1992/93, 16.9 per cent of firearm homicides were committed with a handgun, whereas in 1999/2000 this increased to 47.5 per cent (Mouzos 2001). The IBIS system will allow for the tracing of firearms and will also open-up the possibility of linking homicides where the same firearm has been used. The head of the Ballistics Unit Sgt Wayne Hoffman was quoted as saying:

*In 70 minutes we were able to do what would have taken 100 years or basically a lifetime to perform ... This is a major breakthrough in crime fighting ... it is a way forward and has bought things out of the dark ages* (Daily Telegraph, 15/03/01, p. 10).

Other Technological Advances

In addition to the new responses already discussed, it is also important to mention the increased use of and the advancement in telecommunications. Whilst there are a variety of ways in which telecommunications technology has provided new methods for committing crime and new targets of illegality (Grabosky & Smith 1998), telecommunications can also be usefully applied to criminal investigations, especially homicide investigations.

Developments in telecommunications technology has greatly enhanced the ability for law enforcement personnel to obtain reliable information through electronic means (although not always with legal authorisation), as well as covertly through a variety of surveillance techniques. These include the interception of telephone calls, physical surveillance such as by the use of informants, listening devices, optical methods of recording information such as video cameras, location positioning systems, such as those used for vehicle tracking, and the interception of electromagnetic
impulses as they travel across telecommunications systems (Grabosky & Smith 1998). With the increasing use of cellular telephones in today’s society, they too have also become a means that have the potential for assisting investigations.

**The Negative Side of “New Responses”**

While most of the technological advances described herein have the capacity to “revolutionise” investigations, not all “new responses” are advantageous, with some impacting negatively on homicide investigations. It is important to keep in mind that technology is a two-edged sword; what can work for law enforcement, can also work against it (Travis 1996). Prime examples include two cases last year where murder trial juries were discharged after the presiding judge found that there was unacceptable risk they had been influenced by the Internet site “CrimeNet”.

According to the CrimeNet web page CrimNet provides a range of services, including maintaining a database of convicted criminals, cross-referenced by name, and type of crime and occupation of criminal, a database of convicted paedophiles and sex offenders, and details of unsolved crimes. People can access such information at a cost via the Internet.

Victorian Supreme Court Justice Hampel had remarked that entries on the CrimeNet site about the accused man could have a prejudicial effect on the man’s chances of a fair trial. The CrimeNet entries not only recorded a previous conviction of the defendant, but contained factual errors about the circumstances of the case. Justice Hampel therefore discharged the jury without verdict (see R v McLachlan [2000] VSC 215 (24 May 2000); R v Cogley [2000] VSCA 231 (12 December 2000); Wilkinson 2000, p. 3).

Hence in some cases the advent of such technological capabilities can be detrimental to the final stage of some homicide investigations – the trial. It seems that “traditional legal tools for ensuring a trial is fair, and keeping material prejudicial to an accused away from the jury, may not easily adapt to the world of cyberspace” (Kenyon 2000, p. 2).

Similarly, with the increased use of technology and telecommunication systems there is also the increased fear that violations of an individual’s right to privacy may occur. There are privacy concerns regarding how “new information” can and should be used, and what is an acceptable balance between the rights of the individual against the victim and/or society at large. In essence, there needs to be a balance between competing interests:

Respect for an individual’s privacy is not, however, an absolute interest but is subject to other interests in society which may be seen as being of competing importance. One of those is the need for the crime to be prevented, investigated and prosecuted (Grabosky & Smith 1998, p. 29).

**Concluding Comments**

We are currently living in a time of increasingly rapid technological and scientific progress that has come to impact on all facets of our lives. It is therefore not surprising that many Australian police services are embracing the advancement of technology and have come to realise that in most instances, “new responses” can re-engineer some processes making access to crucial information more timely, and less labour intensive. While the “legwork” in homicide investigations is still considered essential, “new responses” to this antiquated crime have the potential to clear-up many of the unsolved cases, and to provide unequivocal evidence of a suspect’s guilt that cannot be disputed in a court of law. Proving finally to many that “justice can be done”.

---

References


Daily Telegraph 2001, “‘DNA’ to help track weapons”, 15/03/01, General News Section, p. 10.


Robertson, J. unpublished. Presentation to MOSC Course, 21/02/00, AFP Training College, Barton.


Wilkinson, G. 2000, “Net site aborts trial”, *Herald-Sun*, 25/05/00, p. 3.


**Acknowledgments**

The author gratefully acknowledges the insightful comments provided on earlier drafts of this paper by Inspector John Venditto South Australia Police Service and Dr James Robertson, Director of Forensic Services, Australian Federal Police.